Shifted Dual Equivalence and Schur P -positivity
نویسنده
چکیده
Dual equivalence puts a crystal-like structure on linear representations of the symmetric group that affords many nice combinatorial properties. In this talk, we extend this theory to type B, putting an analogous structure on projective representations of the symmetric group. On the level of generating functions, the type A theory gives a universal method for proving Schur positivity, and the type B theory gives a universal method for proving Schur P-positivity. In addition, we use the analogy between type A and type B to define an LLT polynomial for type B that we prove is Schur P-positive. This talk will be accessible to graduate students. Title:
منابع مشابه
Dual Equivalence Graphs and a Combinatorial Proof of Llt and Macdonald Positivity
We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. By constructing a graph on ribbon tableaux which we transform into a dual equivalence graph, we give a combinatorial proof of the symmetry and Schur positivity of the ribbon tableaux generating func...
متن کاملDual equivalence graphs, ribbon tableaux and Macdonald polynomials
We make a systematic study of a new combinatorial construction called a dual equivalence graph. Motivated by the dual equivalence relation on standard Young tableaux introduced by Haiman, we axiomatize such constructions and prove that the generating functions of these graphs are Schur positive. We construct a graph on k-ribbon tableaux which we conjecture to be a dual equivalence graph, and we...
متن کاملThe Schur Expansion of Macdonald Polynomials
Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.
متن کاملAffine dual equivalence and k-Schur functions
The k-Schur functions were first introduced by Lapointe, Lascoux and Morse [18] in the hopes of refining the expansion of Macdonald polynomials into Schur functions. Recently, an alternative definition for k-Schur functions was given by Lam, Lapointe, Morse, and Shimozono [17] as the weighted generating function of starred strong tableaux which correspond with labeled saturated chains in the Br...
متن کاملA combinatorial realization of Schur-Weyl duality via crystal graphs and dual equivalence graphs
For any polynomial representation of the special linear group, the nodes of the corresponding crystal may be indexed by semi-standard Young tableaux. Under certain conditions, the standard Young tableaux occur, and do so with weight 0. Standard Young tableaux also parametrize the vertices of dual equivalence graphs. Motivated by the underlying representation theory, in this paper, we explain th...
متن کامل